April 2, 2019

Introduction to Surface Acoustic Wave (SAW) Devices

Part 1: What is SAW Device?

Ken-ya Hashimoto Chiba University k.hashimoto@ieee.org http://www.te.chiba-u.jp/~ken

Contents

- •SAW Transversal Filter
- •SAW Unidirectional IDT Filters
- •SAW Resonator Filters
- •Duplexers
- •Oscillators
- •SAW Wireless Tags and Sensors

Contents

•SAW Transversal Filter

Surface Acoustic Wave

Propagation of Seismological Waves Bulk Acoustic Wave (BAW):

•Longitudinal Wave (Primary Wave)

•Transverse Wave (Shear Wave, Secondary Wave)

> Surface Acoustic Wave (SAW): (Rayleigh SAW)

Surface Acoustic Wave (SAW) Device

- Mass Production by Photolithography
- Low loss, Miniature & Low price
- Operation inVHF-UHF ranges

Line width $\lambda/4=0.5\mu m$ (f=2GHz)

SAW Transversal Filters

Impulse Response

• Independent Control of Amplitude and Phase Responses

Impulse Response Frequency Response

$$h(t) = \int_{-\infty}^{+\infty} H(f) \exp(+2\pi j f t) df \qquad H(f) = \int_{-\infty}^{+\infty} h(t) \exp(-2\pi j f t) dt$$

Piezoelectricity

Electric Flux (Electric Field) \propto **Stress (Strain)**

Piezoelectricity

Stress (Strain) ∝ Electric field (Electric Flux)

(a) Equilibrium (b) Extension (c) Compression*E*: Electric Field

No Electric Output

Electrostriction

Stress (Strain) \propto {Electric field (Electric Flux)}²

(a) Equilibrium (b) Compressive (c) Compressive*p*: Dipole Moment

Negligible for Weak Electric field

Why Acoustic Wave Devices?

• Temperature Stability

For watch, $\frac{1 \text{ sec.}}{1 \text{ day}} \cong 10 \text{ ppm}$

cf. For Si, 3000ppm/°C $I = I_0 [\exp(qV/kT) - 1]$

Trade-Off Between Temp. Stability & Bandwidth

Efficient Use of Frequency Resources ⇔ Narrow Transition Bandwidth (Or Improve Production Yield)

Ripple due to truncation [Gibb's Phenomenon]

Influence of Truncation

Convolution Relation

$$H_w(f) = \int_{-\infty}^{+\infty} H_d(\xi) W(\xi - f) d\xi$$

Hamming: $w(t)=0.54+0.46\cos(2\pi t/T)$

Blackmann: $w(t)=0.42+0.5\cos(2\pi t/T)+0.08\cos(4\pi t/T)$

Blackmann-Harris: $w(t)=0.35875+0.48829\cos(2\pi t/T)$ +0.14128 $\cos(4\pi t/T)$ +0.01168 $\cos(6\pi t/T)$

Frequency Response of Window Functions with same T

SAW Transversal Filter for CATV

SAW IF Filter for IS-95

Courtesy of Fujitsu Labs.

Variation with Aperture Size

For Weighted IDT

Low Frequency Design

High Z_{in} and Low Z_{out} for Minimum Interference

High Frequency Design

R_L=R_S for Maximum Power Transfer

How about this case?

Triple Transit Echo (TTE)

- Mechanical Reflection + Electrical Regeneration ⇒ Mutual-Connection Dependent
- Trade-Off: TTE ⇔ Insertion Loss
- Intrinsic for Bidirectional IDTs

·Absorbers for Suppression of Reflection at Substrate Edges

•Dummy Electrode for Suppression of Reflection and Charge Concentration at Edges

·Guard Electrode for Suppression of EM Feedthrough

Contents

•SAW Unidirectional IDT Filters

Heterodyne Transceiver

Red: SAW Devices

Single Phase Unidirectional Transducer (SPUDTs)

(a) Combination with Reflector(Simple but Narrowband)

(b) Embedded Reflector(Complex but Wideband)

- TTE Suppression
- Low Loss
- Frequency Response
 ⇒ Weighting for Excitation Profile
- Reflection Bandwidth
 < IDT Bandwidth ⇒
 Reflector Weighting

Independent Weighting to both Excitation and Reflection

Unidirectional Condition

For +*X* Direction, $-2\beta\Delta + \angle \Gamma = 2m\pi$ For -*X* Direction $-2\beta(p_I - \Delta) + \angle \Gamma = (2n+1)\pi$

Unidirectional Cond. $\angle \Gamma = \pm \pi / 2$, $\Delta = \pm \lambda / 8$

For Independent Weighting to Excitation and Reflection

EWC(Electrode-Width-Control)/SPUDT

Filter Response with Reduced TTE

Low Loss and Suppressed TTE

Resonant SPUDT (R-SPUDTs)

- Skirt Characteristics are Defined by Impulse Response Length
- Out-of-Band Characteristics are Defined by Excitation Profile

Designed Example

Weak Resonant SPUDT Filter

Courtesy of EPCOS AG

Strong Resonant SPUDT Filter

Courtesy of EPCOS AG

Contents

•SAW Resonator Filters

Homodyne Transceiver

- Circuit Simplification ⇒ Reducing Component Number
- No Image Signal \Rightarrow Relaxing Specs to RF Filters

SAW Resonator

Application of Electric Field to Piezoelectric Material,

(a) Electric + Mechanical Circuit (b) Electrical Equiv. Circuit Analogies between $V \Leftrightarrow F$ and $I \Leftrightarrow v$ reduce to $M \Leftrightarrow L, \eta \Leftrightarrow R, k \Leftrightarrow 1/C$

(a) Electrical Equiv. Circuit (b) Equiv. Mechanical Circuit

- •Resonance Frequency $\omega_r = 1 / \sqrt{C_m L_m}$
- •Anti-Resonance Frequency $\omega_a = 1 \sqrt{L_m (C_m^{-1} + C_0^{-1})^{-1}}$
- •Resonance Q (Steepness of Resonance) $Q = \omega_r L_m / R_m$

⇒ Determine Insertion Loss and Skirt Characteristics
•Capacitance Ratio (Weakness of Piezoelectricity)

 $\gamma = C_0 / C_m = [(\omega_a / \omega_r)^2 - 1]^{-1}$

 \Rightarrow Determine Insertion Loss and Bandwidth

•Resonance Frequency $\omega_r = 1 / \sqrt{C_m L_m}$ •Anti-Resonance Frequency $\omega_a = 1 / \sqrt{L_m (C_m^{-1} + C_0^{-1})^{-1}}$

Transverse Mode

Influence of Diffraction

SAW Resonator on Quartz

Field Distribution Observed by Laser Probe

431.625 MHz

433.00 MHz

434.635 MHz

Power Leakage to Bus Bar Regions

IDT Apodize

Reduction of Excitation Efficiency for Higher Modes Loss Increase by Scattering at Discontinuities

Reflection at Gaps ⇒ Strong Wave Confinement

Spurious Modes Penetration \Rightarrow Leakage to Bus Bar Regions

T.Omori, K.Matsuda, N.Yokoyama, K.Hashimoto, and M.Yamaguchi, "Suppression of Transverse Mode Responses in Ultra-Wideband SAW Resonators Fabricated on a Cu-grating/15°YX-LiNbO₃ Structure", IEEE Trans. Ultrason., Ferroelec., and Freq. Contr., 54, 10 (2007) pp. 1943-1948.

Piston Mode BAW Resonator

Active Region

R.Thalhammer, J.Kaitila, S.Zieglmeier, and L.Elbrecht, "Spurious mode suppression in BAW resonators," Proc. IEEE Ultrason. Symp. (2006) pp. 456-459

Piston Mode SAW Resonator

M.Solal, J.Gratier, R.Aigner, K.Gamble, B.Abbott, T.Kook, A.Chen, and K.Steiner, "Transverse modes suppression and loss reduction for buried electrodes SAW devices," Proc. IEEE Ultrason. Symp. (2010) pp. 624-628

Ladder-Type SAW Filter

- Low Loss
- High Power Durability
- Moderate Out-of-Band Rejection

Topology

Performance of Ladder-Type SAW Filter

Fujitsu FAR-F6CP-2G1400-L21M

W-CDMA-Rx

Symmetrical & Antisymmetrical Resonances

Electrically Isolated I/O

- Good Out-of-Band Rejection
- Balun Function
- Transformer Function
- Low Loss
- Lower Power Durability

Structure of Pitch-Modulated IDT & Reflector

Conventional Structure

<u>Pitch-Modulated Structure</u>

Modulated

Modulated

Presented at IEEE 2004 UFFC Conf.

DMS Filter with Modulated Structure

Current Antenna and RF Stage are Unbalanced

SAW Filter with Balun Function

DMS Filter (Ideally No Common Signal)

Acoustically Coupled but Electrically Isolated

Common Signal Generation by Parasitics

Z-conversion by DMS Filter

Contents

•Duplexers

Role of Duplexer in FDD Transceiver

Tx->Rx Leakage Suppression in Tx Band = Duplexer *Minimization of RF Power Loss*

Taiyo Yuden FAR-D6CZ-1G9600-D1XC

Avago's FBAR PCS Duplexer ACMD-7402 (3.8*3.8*1.3mm)

Frequency Allocation

RF Front End of One Generation Before....

Relation Between Stress *T* and Strain *S*

Case 2: When
$$T = T_{a}\cos(\omega_{a}t) + T_{b}\cos(\omega_{b}t) (|T_{a}| >> |T_{b}|)$$
,
 $S = s^{(1)}(T_{a}\cos\omega_{a}t + T_{b}\cos\omega_{2}t) + s^{(2)}(T_{a}\cos\omega_{a}t + T_{b}\cos\omega_{b}t)^{2}/2$
 $+ s^{(3)}(T_{a}\cos\omega_{a}t + T_{b}\cos\omega_{b}t)^{3}/3 + \cdots$
 $\cong T_{a}\{s^{(1)} + s^{(3)}T_{a}^{2}/4\}\cos\omega_{a}t$ Linear Vibration
 $+ T_{b}\{s^{(1)} + s^{(3)}T_{a}^{2}/2\}\cos\omega_{b}t$ +Gain Compression
 $+ s^{(2)}T_{a}^{2}\cos(2\omega_{a}t)/4 + s^{(2)}T_{a}^{2}/4$ ------ H2+DC Generation
 $+ s^{(2)}T_{a}T_{b}[\cos\{(\omega_{a} + \omega_{b})t\} + \cos\{(\omega_{a} - \omega_{b})t\}]/2$ Generation
 $+ s^{(3)}T_{a}^{2}T_{b}[\cos\{(2\omega_{a} + \omega_{b})t\} + \cos\{(2\omega_{a} - \omega_{b})t\}]/4$
 $+ \cdots$ IMD3 Generation

IMD: Inter-Modulation Distortion
Spectrum Regrowth in PA and DPX = Self Mixing of Tx Signals

Jammer Signal Emission Toward Adjacent Channels

Inter Modulation Distortion in Nonlinear Circuit for WCDMA System

In Elastic Region (w/o Hysteresis)

FBAR (Tx) + DMS (Rx) Duplexer

DMS Offers Balanced Output

With Improved Temperature Stability

R.Ruby and M.Gat, "FBAR Filters- 2012," Proc. 2012 International Symposium on Acoustic Wave Devices for Future Mobile Communications) G1 -1~4

LT/Sapphire Wafer Bonding

Figure 8: Temperature characteristics of the resonant and antiresonant frequencies of a one-port SAW resonator using a bonded LiTaO₃/sapphire substrate.

M. Miura, T. Matsuda, Y. Satoh, M. Ueda, O. Ikata, Y. Ebata, and H.Takagi, "Temperature Compensated LiTaO₃/Sapphire Bonded SAW Substrate with Low Loss and High Coupling Factor Suitable for US-PCS Application," Proc. IEEE Ultrasonics Symposium (2004) pp. 1322-1325

Performance Example

Figure 9: Frequency characteristics of PCS SAW duplexers using a bonded $LiTaO_3$ /sapphire substrate and a conventional $LiTaO_3$ substrate.

M. Miura, T. Matsuda, Y. Satoh, M. Ueda, O. Ikata, Y. Ebata, and H.Takagi, "Temperature Compensated LiTaO3/Sapphire Bonded SAW Substrate with Low Loss and High Coupling Factor Suitable for US-PCS Application," Proc. IEEE Ultrasonics Symposium (2004) pp. 1322-1325

SiO₂ On-Top Deposition

SiO₂: Stiffness Increase with Temperature

Fig. 5. Side-wall sections of SiO₂/IDT/substrate structure with nonflattened and flattened SiO₂ surface (IDT thickness: 0.048λ).

M Kadota, N.Takaeshi, N.Taniguchi, E.Takata, M.Miura, K.Nishiyama, T.Hada, and T.Komura, "Surface Acoustic Wave Duplexer for US Personal Communication Services with Good Temperature Characteristics," Jpn. J. Appl. Phys., 44 6B (2005) pp. 4527-4531

Performance Example

Fig. 8. Frequency characteristics of Tx filter of US-PCS SAW duplexer using flattened SiO₂/Cu(0.048λ)/LiTaO₃ structure at -30°C, 25°C, and 85°C.
Frequency characteristics of Rx filter of US-PCS SAW duplexer ng flattened SiO₂/Cu(0.048λ)/LiTaO₃ structure at -30°C, 25°C, and 'C.

M Kadota, N.Takaeshi, N.Taniguchi, E.Takata, M.Miura, K.Nishiyama, T.Hada, and T.Komura, "Surface Acoustic Wave Duplexer for US Personal Communication Services with Good Temperature Characteristics," Jpn. J. Appl. Phys., 44 6B (2005) pp. 4527-4531

Use of SiO₂ for Temperature Compensation

(ZDR). The edge of the 'swimming' pool is shown. The layers are labeled.

Rich Ruby, "A Decade of FBAR Success and What is Needed for Another Successful Decade," Proc. SPAWDA (2011) pp. 365-369

Relation Between FTIR FWHM and TCF in

SiO₂ Properties Change with Deposition Condition

S.Matsuda, M.Hara, M.Miura, T.Matsuda, M.Ueda, Y.Satoh, and K.Hashimoto, "Use of Fluorine Doped Silicon Oxide for Temperature Compensation of Radio Frequency Surface Acoustic Wave Devices," IEEE Trans. Ultrason., Ferroelec., and Freq. Contr., 59, 1 (2012) pp. 135-138

Material Characterization

Quantitative Evaluation of Acoustic Properties of Thin Films with High Accuracy

θ Dependence of SAW Vel. on SiO₂ (1 μm)/ (001)Si Surface

K.Sakamoto, S.Suzuki, T.Omori, K.Hashimoto, J.Kushibiki, and S.Matsuda, "Characterization of Elastic Properties of SiO₂ Thin Films by Ultrasonic Microscopy," Proc. IEEE Ultrason. Symp. (2014) pp. 893-896

Use of Extremely Thin Piezo-Layer

Energy Confinement in Thin Piezo-Layer

Murata's IHP SAW Duplexer

Temperature Stability

T.Takai, H.Iwamoto, Y.Takamine, H.Yamazaki, T.Fuyutsume, H.Kyoya, T.Nakao, H.Kando, M.Hiramoto, T.Toi, M.Koshino and N.Nakajima "Incredible High Performance SAW resonator on Novel Multi-layerd Substrate", Proc. IEEE Ultrason. Symp. (2016) For Further Increase in Channel Capacity $C = B \log_2(1 + \mathrm{SNR})$ **B:** Bandwidth $C \cong NB \log_2(1 + \text{SNR})$ N: No. Antenna

Multi-Input Multi-Output (MIMO)

Carrier Aggregation

Requirements to Pico Cell Duplexer?

Orthogonal Frequency Division Multiple Access, OFDMA

OFDMA System Setup

Peak to Average Power Ratio (PAPR)

Use of Effective Coding = Increase of PAPR (Random Variation in time)

Necessity of Linearity Improvement Necessity of Durability Improvement for Peak Power

Power Durability

Increase in Substrate Temperature for Given Input Power

Generation of Voids and Hillocks = Acousto-Migration

Where is the Weakest?

Life Time Modelling

$$\mathrm{TF} = \alpha P^{-\beta} \exp(-E / kT)$$

 α,β, E :constant, *k*: Boltzmann Constant, *T*: Absolute Temperature

For High Power?

- Electrode Material and Structure
- Heat Reduction (Loss Reduction)
- Improving Thermal Conductivity: Wafer Bonding, ScAlN?
- Reduction of Power Density

Half Input Voltage

Doubled Electrode Area

Increase in Chip Size...

Increase in Peak Power → Cause of Different Failure Mechanism

Contents

•Oscillators

Quartz Oscillation Circuit

Use of Acoustic Vibration

High Quality Factor = Long Vibration Sustain → Insensitive to Noise

High Temperature Stability

 2^{15} =32,768Hz Osc. →Counting 2^{15} Pulses Gives 1 Sec. How Accurate? $\frac{1 \text{ sec.}}{1 \text{ day}} \cong 10 \text{ ppm}$

Global Positioning System (GPS)

Present position (x, y, z) is given by solving $d_n^2 = (x - x_n)^2 + (y - y_n)^2 + (z - z_n)^2$ $n = 1, 2, \dots, N$

 x_n, y_n, z_n : position of the *n*-th satellite d_n : distance from the *n*-th satellite

Oscillation Spectrum (Phase Noise)

Conversion of AM Noise to PM Noise via Saturation

Long Term Stability (Ageing) Mid Term Stability (Temp. Drift) Short Term Stability (Fluctuation)

Phase-Locked Loop (PLL)

• Use of Stable $\omega_s \Rightarrow$ Accurate & Stable

• Programmable Divider \Rightarrow Tunable

VCO (Voltage Controlled Oscillator) Determines Thermal Noise Level

Phase Noise Deterioration at Counter Change

Influence of Phase Noise

Mixing with Local Oscillation c(t) with Noise

Conversion of Thermal and 1/f Noise in Adjacent Channel to Desired Channel

Spectrum After Mixing

Software Defined Radio (SDR)

ADC: Analog-to-Digital Converter

Multiple Standard (GSM, UMTS, GPS, etc.) Support by Software Loading from HDD

System Upgrade by Software Download

For SDR Realization

Jitter Generation by Thermal Noise

Influence of Jitter to High Speed ADC

Jitter Causes Amplitude Fluctuation (Error) Influence of Jitter Significant at High Frequency
Influence of Jitter and Freq. to SNR

How to Reduce Jitters

• Low Jitter (Low Noise) Oscillation Using High *Q* Resonators

cf: Atomic Clock (Very Accurate But Not Precise)

Stabilization by Quartz Oscillator (Very Precise But Not Accurate Enough)

Very Precise and Very Accurate Oscillation

Contents

•SAW Wireless Tags and Sensors

- Temperature Stability
- Phase (or Frequency) Output ⇒ High Resolution
- Low Price

- High $f(\Delta f = -K f_0^2 \Delta m) \Rightarrow$ High Sensitivity
- Moderate Temperature Stability
- Surface Protection (Packaging) ?

Area 1 mm² & f_0 =1 GHz give $Kf_0 \sim 10^7 / \text{kg}$ \Rightarrow 1 ppm of *f* deviation=Resolution 0.1 pg.

- Sensitive Layer: A calixarene (10 nm)
- Object: tetrachloroethene
- $f_0: 434 \text{ MHz}$

Pattern Recognisition with Sensor Array

What is SAW ID-TAG?

- Wireless, Batteryless
- Large Group Delay (Separation with Environmental Echoes)

Separation of SAW Signal in Time Domain А **Excited Signal RF** Response time I---- Sensor ----I Environmental Echo Echo

Which Frequency?

•5.2 GHz (ISM Band) Wideband (100MHz), Short Accessible Distance (<1m), Hard to Realize SAW Devices

•2.45 GHz (ISM Band) Wideband(22MHz), Short Accessible Distance (2-3m), Price of SAW Devices?

•433.92 MHz (RKE Band) Narrowband(1.7MHz), Long Accessible Distance (>10m), Low SAW Device Cost

SAW ID Tag with 5 reflectors in one track $(f_0 = 2.45 \text{ GHz})$ using pulse position coding

Baumer Ident (2.45 GHz ISM)

OIS - W

Baumer electric

Brake temperature of a train entering a station

reader antenna

Brake (with attached SAW temperature transponder, not seen)

