April 2, 2019

Introduction to Surface Acoustic Wave (SAW) Devices

Part 5: Coupling of Modes Theory

Ken-ya Hashimoto Chiba University k.hashimoto@ieee.org

http://www.te.chiba-u.jp/~ken

Contents

- Colinear Coupling
- Reflective Coupling
- IDT Modeling
- IDT Properties
- SAW Device Simulation
- Parameter Extraction
- BAWs and SH SAWs

Contents

• Colinear Coupling

Coupling-Of-Modes (COM) Theory

Loss-Less Condition (Unitary Condition)

 $\frac{\partial X \to 0 \text{ gives}}{\partial u_1(X)|^2 + |u_2(X)|^2} = u_1^* \frac{\partial u_1}{\partial X} + u_1 \left(\frac{\partial u_1}{\partial X}\right)^* + u_2^* \frac{\partial u_2}{\partial X} + u_2 \left(\frac{\partial u_2}{\partial X}\right)^* = 0$

Substitution of COM Equations Gives $2 \operatorname{Im}[\beta_{u}] \left(\left| u_{1} \right|^{2} + \left| u_{2} \right|^{2} \right) + \operatorname{Im}[(\kappa - \kappa'^{*})u_{1}^{*}u_{2}] = 0$

To Satisfy for Arbitrary u_1 , $u_2 \& X$, $Im[\beta_u]=0 \& \kappa'=\kappa^*$

Final COM Equations

$$\frac{\partial u_1}{\partial X} = -j\beta_u u_1 - j\kappa u_2$$
$$\frac{\partial u_2}{\partial X} = -j\beta_u u_2 - j\kappa^* u_1$$

When Two Waveguides are Exchangable, κ is Real

General Solution

$$u_{1} = A_{+} \exp(-j\beta_{+}X) + A_{-} \exp(-j\beta_{-}X)$$

$$u_{2} = rA_{+} \exp(-j\beta_{+}X) - rA_{-} \exp(-j\beta_{-}X)$$

Where $\beta_{\pm} = \beta_{u} \pm |\kappa| = r = |\kappa| / \kappa$

When κ is Real, Two Partial Waves Correspond to

Application of Boundary Condition

Boundary Condition

 $u_1(0) = A_i \& u_2(0) = 0$

$$\Rightarrow A_{+}=A_{-}=A_{i}/2$$

Multi-Strip-Coupler (MSC)

Velocity Difference in Short- & Open-Circuited Gratings

Transversal Filter Using MSC

When two waveguides are not equivalent

$$\frac{\partial u_1}{\partial X} = -j(\beta_u + \delta)u_1 - j\kappa u_2$$

$$\frac{\partial u_2}{\partial X} = -j\kappa u_1 - j\beta_u u_2$$

 $\kappa: \text{ real value}$

General Solution

$$u_{1} = A_{+} \exp(-j\beta_{+}X) + A_{-} \exp(-j\beta_{-}X)$$
$$u_{2} = r_{+}A_{+} \exp(-j\beta_{+}X) + r_{-}A_{-} \exp(-j\beta_{-}X)$$

where
$$\beta_{\pm} = \beta_u + \delta / 2 \pm \Delta$$
 $r_{\pm} = (\delta / 2 \mp \Delta) / \kappa$
$$\Delta = \sqrt{(\delta / 2)^2 + \kappa^2}$$

Boundary Condition $u_1(0)=A_i, u_2(0)=0$

 $u_1 = A_i \exp\{-j(\beta_u + \delta/2)X\} \{\cos(\Delta X) - j(\delta/2\Delta)\sin(\Delta X)\}$ $u_2 = j(\kappa/\Delta)A_i \exp\{-j(\beta_u + \delta/2)X\} \sin(\Delta X)$

$$\Delta = \sqrt{\left(\delta / 2\right)^2 + \kappa^2}$$

Influence of Coupling Obvious Only When δ is Small Split Width ∞ Coupling Strength

Contents

• Reflective Coupling

Due to Periodicity, Eigen Modes in Infinite Periodic Gratings Satisfy

$$u_{\pm}(X+p) = u_{\pm}(X) \exp(\mp j\beta_0 p)$$

Where β_0 is Wavenumber of Grating Mode

Define
$$u_{\pm}(X) = U_{\pm}(X) \exp(\mp j\beta_0 X)$$

Then We Obtain

 $U_{\pm}(X+p) = U_{\pm}(X)$: Periodic Function

Since
$$U_{\pm}(X)$$
 is Periodic Function
 $U_{\pm}(X) = \sum_{n=-\infty}^{+\infty} A_{\pm}^{(n)} \exp(\mp nj\beta_G X)$

Where $\beta_G = 2\pi/p$: Grating Vector $A_{\pm}^{(n)}$: Amplitude of *n*-th Partial Wave

$$u_{\pm}(X) = \sum_{n=-\infty}^{+\infty} A_{\pm}^{(n)} \exp(\mp j\beta_n X)$$

Where $\beta_n = \beta_0 + n\beta_G$

Incident Wave with β is Spatially Modulated, and Components with β + $n\beta_G$ are Generated.

SAW Dispersion in Periodic Structures

Bragg Reflection

2D Expression of Bragg Reflection

Lateral Propagation with Bragg Reflection

When Two SAWs Coupled through Bragg Reflection

COM Analysis for Periodic Structures

Eigen Mode Equations [General Solution: $u_{\pm} \propto \exp(\mp j\beta_u X)$]

$$\frac{\partial u_{+}}{\partial X} = -j\beta_{u}u_{+} - j\kappa_{12}u_{-}\exp(-j\beta_{G}X)$$
$$\frac{\partial u_{-}}{\partial X} = +j\beta_{u}u_{-} + j\kappa_{12}^{*}u_{+}\exp(+j\beta_{G}X)$$

COM Equations for Forward & Backward Waves

- β_{u} : Wavenumber of Uncoupled Wave
- $\beta_{\rm G}$: Grating Vector (2 π/p), p: Periodicity
- κ_{12} : Mutual Coupling Coefficient = Reflectivity per Unit Length

For Derivation, Loss Less Condition was Applied

Define $U_{\pm}(X) = u_{\pm}(X) \exp(\pm j\beta_G X/2)$.

Since
$$u_{\pm}(X) = U_{\pm}(X) \exp(\frac{-j\beta_G X/2}{A}),$$

 $\frac{\partial U_{\pm}}{\partial X} = -j\theta_u U_{\pm} - j\kappa_{12} U_{\pm}$
 $\frac{\partial U_{\pm}}{\partial X} = +j\kappa_{12}^* U_{\pm} + j\theta_u U_{\pm}$
where $\theta_u = \beta_u - \beta_G/2$: Detuning Factor
 $(\theta_u = 0 \text{ corresponds to Bragg Condition})$

Origin of Phase in κ_{12}

Displacement of Reflection Center from Origin

$$d_r/p_I = \angle(\kappa_{12})/4\pi$$

General Solution

$$U_{+}(X) = A_{+} \exp(-j\theta_{p}X) + \Gamma_{-}A_{-} \exp(+j\theta_{p}X)$$
$$U_{-}(X) = \Gamma_{+}A_{+} \exp(-j\theta_{p}X) + A_{-} \exp(+j\theta_{p}X)$$

 $\beta_{\rm p} = \theta_{\rm p} + \pi/p$: Wavenumber of *Perturbed* Wave $\theta_{\rm p} = \sqrt{\theta_{\rm u}^2 - |\kappa_{12}|^2}$

 $\Gamma_{+} = (\theta_{p} - \theta_{u})/\kappa_{12} \& \Gamma_{-} = (\theta_{p} - \theta_{u})/\kappa_{12}^{*}$: Reflection Coefficient of Semi-Infinite Grating Looking toward $\pm X$ direction

 $\Rightarrow \kappa_{12}$ is Real When Grating is Symmetric

 A_{\pm} : Amplitude of Partial Wave

Behavior Near Bragg Frequency

$$\theta_{\rm p} = /\theta_{\rm u}^2 - |\kappa_{12}|^2$$

|κ₁₂| determines Both Stopband Width & Attenuation Constant

Application of Boundary Condition

 $U_{+}(X) = A_{+} \exp(-j\theta_{p}X) + \Gamma_{-}A_{-} \exp(+j\theta_{p}X)$ $U_{-}(X) = \Gamma_{+}A_{+} \exp(-j\theta_{p}X) + A_{-} \exp(+j\theta_{p}X)$

Since $U_{+}(0)=A_{\text{in}} \& U_{-}(L)=0$,

$$\Gamma = \frac{A_r}{A_{in}} = \frac{\Gamma_+ [1 - \exp(-2j\theta_p L)]}{1 - \Gamma_+ \Gamma_- \exp(-2j\theta_p L)}$$
$$T = \frac{A_t}{A_{in}} = \frac{\exp(-j\theta_p L)(1 - \Gamma_+ \Gamma_-)}{1 - \Gamma_+ \Gamma_- \exp(-2j\theta_p L)}$$

• IDT Modeling

COM Equation for SAW Devices

$$\frac{\partial u_{-}}{\partial X} = +j\kappa_{12}^{*}u_{+}\exp(+j\beta_{G}X) + j\beta_{u}u_{-} - j\zeta^{*}V_{0}\exp(+j\beta_{G}X/2)$$

Spatial Components with $\pm \beta_G/2(=\pm 2\pi/p_I)$ are Considered

Equation for Current on Bus-Bar

C: Static Capacitance per Unit Length
χ=2 for RMS *I*,*V* & *u*χ=4 for peak *I*,*V* & RMS *u*

 $\frac{\partial I}{\partial X} = -j\chi\zeta^* u_+ \exp(+j\beta_G X/2) - j\chi\zeta u_- \exp(-j\beta_G X/2) + j\omega CV_0$

Spatial Components with $\pm \beta_G/2(=\pm 2\pi/p_I)$ are Considered

For Derivation, Loss Less Condition & Bidirectionality (When Mechanical Reflection is Zero) are Applied

Final COM Equations

$$\frac{\partial u_{+}}{\partial X} = -j\theta_{u}u_{+} - j\kappa_{12}u_{-}\exp(-j\beta_{G}X) + j\zeta V_{0}\exp(-j\beta_{G}X/2)$$

$$\frac{\partial u_{-}}{\partial X} = j\kappa_{12}^{*}u_{+}\exp(+j\beta_{G}X) + j\theta_{u}u_{-} - j\zeta^{*}V_{0}\exp(+j\beta_{G}X/2)$$

 $\frac{\partial I}{\partial X} = -j\chi\zeta^* u_+ \exp(+j\beta_G X/2) - j\chi\zeta u_- \exp(-j\beta_G X/2) + j\omega CV_0$

Define $U_{\pm}(X) = u_{\pm}(X) \exp(\pm j\beta_G X/2)$. Then Since $u_{\pm}(X) = U_{\pm}(X) \exp(\pm j\beta_G X/2)$,

$$\frac{\partial U_{+}}{\partial X} = -j\theta_{u}U_{+} - j\kappa_{12}U_{-} + j\zeta V_{0}$$
$$\frac{\partial U_{-}}{\partial X} = +j\kappa_{12}^{*}U_{+} + j\theta_{u}U_{-} - j\zeta^{*}V_{0}$$
$$\frac{\partial I}{\partial X} = -j\chi\zeta^{*}U_{+} - j\chi\zeta U_{-} + j\omega CV_{0}$$

General Solution

 $U_{+}(X) = A_{+} \exp(-j\theta_{p}X) + \Gamma_{-}A_{-} \exp(+j\theta_{p}X) + \xi_{+}V_{0}$ $U_{-}(X) = \Gamma_{+}A_{+} \exp(-j\theta_{p}X) + A_{-} \exp(+j\theta_{p}X) + \xi_{-}V_{0}$ Where $\xi_{+} = (\zeta\theta_{u} - \zeta^{*}\kappa_{12})/\theta_{p}^{2} \& \xi_{-} = (\zeta^{*}\theta_{u} - \zeta\kappa_{12})/\theta_{p}^{2}$: Excitation Efficiency toward $\pm X$ Direction

Origin of Phase in ζ

Displacement of Excitation Center from Origin

 $d_t/p_I = \angle(\zeta)/2\pi$

Short Circuited (SC) Grating

Since
$$V_0 = 0$$
,

$$\frac{\partial U_+}{\partial X} = -j\theta_u U_+ - j\kappa_{12} U_-$$

$$\frac{\partial U_-}{\partial X} = +j\kappa_{12}^* U_+ + j\theta_u U_-$$

$$\theta_p = \sqrt{\theta_u^2 - |\kappa_{12}|^2}$$

Open Circuited (OC) Grating

Since $\delta I=0$, where $\frac{\partial U_{+}}{\partial X} = -j\hat{\theta}_{u}U_{+} - j\hat{\kappa}_{12}U_{-}$ $\frac{\partial U_{-}}{\partial X} = +j\hat{\kappa}_{12}^{*}U_{+} + j\hat{\theta}_{u}U_{-}$ $\hat{\theta}_{u} = \theta_{u} - \chi |\zeta|^{2} / \omega C$ $\hat{\kappa}_{12} = \kappa_{12} - \chi \zeta^{-2} / \omega C$ $\hat{\theta}_{p} = \sqrt{\hat{\theta}_{u}^{2} - |\hat{\kappa}_{12}|^{2}}$

• IDT Properties

SAW Excitation by IDT (When ζ and κ_{12} are Real)

 $\Gamma_{\pm} = (\theta_{p} - \theta_{u}) / \kappa_{12} \equiv \Gamma_{0}$ $\xi_{\pm} = \zeta / (\theta_{u} + \kappa_{12}) \equiv \xi_{0}$

Boundary Conditions: $U_{+}(-L/2)=0$, $U_{-}(+L/2)=0$, I(-L/2)=0

$$A_{+} = A_{-} = \frac{-\xi_{0}V_{0}}{\exp(+j\theta_{p}L/2) + \Gamma_{0}\exp(-j\theta_{p}L/2)}$$
$$Y = V_{0}^{-1} \int_{-L/2}^{+L/2} \frac{\partial I(X)}{\partial X} dX = \int_{-L/2}^{+L/2} [-j\chi\zeta V_{0}^{-1}(U_{+} + U_{-}) + j\omega C] dX$$

$$Y = \int_{-L/2}^{+L/2} [-2j\chi\zeta V_0^{-1}A_+(1+\Gamma_0)\cos(\theta_p X) - j(2\chi\xi_0\zeta - \omega C)]dX$$

= $\frac{2j\chi\xi_0\zeta(1+\Gamma_0)L\sin(\theta_p L/2)}{\exp(+j\theta_p L/2) + \Gamma_0\exp(-j\theta_p L/2)} - j(2\chi\xi_0\zeta - \omega C)L$

When
$$\kappa_{12}=0$$
, $\theta_p=\theta_u$, $\Gamma_0=0$ & $\xi_0=\zeta/\theta_u$. Then

$$Y = \frac{2j\chi\zeta^2 L}{\theta_u} [\operatorname{sinc}(\theta_u L) - j\operatorname{sinc}(\theta_u L/2) \sin(\theta_u L/2) - 1] + j\omega CL$$

$$= \chi\zeta^2 L^2 \operatorname{sinc}^2(\theta_u L/2) + \frac{2j\chi\zeta^2 L}{\theta_u} [\operatorname{sinc}(\theta_u L) - 1] + j\omega CL$$

Comparison : Delta Function Model Gives

$$Y = \chi (\zeta p_I)^2 \frac{\sin^2(\theta_u L/2) + 2^{-1} j \sin(\theta_u L) - jL/p_I \sin(\theta_u p_I/2)}{\sin^2(\theta_u p_I/2)} + j\omega CL$$

Input Admittance for Infinite IDT

Since
$$\partial U_{\pm} / \partial X = 0 \& i = p_I \partial I / \partial X$$
,
 $0 = -j \theta_u U_+ - j \kappa_{12} U_- + j \zeta V_0$
 $0 = +j \kappa_{12}^* U_+ + j \theta_u U_- - j \zeta^* V_0$
 $i = -j \chi \zeta^* p_I U_+ - j \chi \zeta p_I U_- + j \omega C p_I V_0$
Then

$$\hat{Y} = \frac{i}{V_0} = -j\chi p_I \frac{2\theta_u |\zeta|^2 - \kappa_{12} \zeta^{*2} - \kappa_{12}^* \zeta^2}{\theta_u^2 - |\kappa_{12}|^2} + j\omega Cp_I$$
$$= j\omega Cp_I \frac{(\theta_u - \theta_{oc}^+)(\theta_u - \theta_{oc}^-)}{(\theta_u - \theta_{sc}^+)(\theta_u - \theta_{sc}^-)}$$

Where $\theta_{oc}^{\pm} = \chi |\zeta|^2 / \omega C \pm |\kappa_{12} - \chi \zeta^2 / \omega C|, \theta_{sc}^{\pm} = \pm |\kappa_{12}|$

COM Parameter Determination by Input Admittance of Infinite IDT

$$\hat{Y}(\omega) = j\omega C p_{\rm I} \frac{(\omega - \omega_{\rm oc}^{+})(\omega - \omega_{\rm oc}^{-})}{(\omega - \omega_{\rm sc}^{+})(\omega - \omega_{\rm sc}^{-})}$$

 $\mu = \angle (\kappa_{12}/\zeta^2)$

• SAW Device Simulation

Simulation of Complex Structures

• Combination of Periodic Structures

Cascade-Connection of Elements

SC Grating = Short-Circuited IDT OC Grating = IDT with Isolated Fingers Gap = Reflection-less, Excitation-less IDT

$IDT Modeling \implies Device Modeling$

Unitary Condition:

$$|P_{11}|^{2} + |P_{12}|^{2} = 1, |P_{22}|^{2} + |P_{12}|^{2} = 1$$

$$p_{11}p_{13}^{*} + p_{12}p_{23}^{*} + p_{13} = 0$$

$$p_{12}p_{13}^{*} + p_{22}p_{23}^{*} + p_{23} = 0$$

$$\frac{\chi}{2} \Big[|P_{11}|^{2} + |P_{12}|^{2} \Big] = \Re(p_{33})$$

Use of COM Model Gives

$$P_{11} = \frac{\Gamma_{-}(1-E^{2})}{1-\Gamma_{+}\Gamma_{-}E^{2}}, P_{22} = \frac{\Gamma_{+}(1-E^{2})}{1-\Gamma_{+}\Gamma_{-}E^{2}}, P_{12} = \frac{E(1-\Gamma_{+}\Gamma_{-})}{1-\Gamma_{+}\Gamma_{-}E^{2}}$$

$$P_{13} = \frac{(1-E)\{\xi_{-}(1+\Gamma_{+}\Gamma_{-}E) - \xi_{+}\Gamma_{+}(1+E)}{1-\Gamma_{+}\Gamma_{-}E^{2}}$$

$$P_{23} = \frac{(1-E)\{\xi_{+}(1+\Gamma_{+}\Gamma_{-}E) - \xi_{-}\Gamma_{-}(1+E)}{1-\Gamma_{+}\Gamma_{-}E^{2}}$$

$$P_{33} = \frac{\chi(1-E)\{(\xi_{+}-\Gamma_{-}\xi_{-}E)(\zeta^{*}+\Gamma_{+}\zeta) + (\xi_{-}-\Gamma_{+}\xi_{+}E)(\zeta+\Gamma_{-}\zeta^{*})\}}{1-\Gamma_{+}\Gamma_{-}E^{2}}$$

$$-j\chi L(\zeta^{*}\xi_{+}+\zeta\xi_{-}) + j\omega CL$$

where $E = \exp(-j\theta_p L)$

When the unit is symmetrical,

$$P_{11} = P_{22} = \frac{\Gamma_0 (1 - E^2)}{1 - \Gamma_0^2 E^2}, P_{12} = \frac{E(1 - \Gamma_0^2)}{1 - \Gamma_0^2 E^2}$$
$$P_{13} = P_{23} = \frac{\xi (1 - E)(1 - \Gamma_0 E)}{1 + \Gamma_0 E}$$
$$P_{33} = 2\chi\xi\zeta \left[\frac{(1 - E)(1 + \Gamma_0)}{\theta_p (1 + \Gamma_0 E)} - jL\right] + j\omega CL$$

Recursive Relation for Unit A (left) + B (right)

$$\begin{split} P_{11} &= P_{11}^{A} + P_{11}^{B} \frac{P_{21}^{A} P_{12}^{A}}{1 - P_{11}^{B} P_{22}^{A}}, \ P_{22} = P_{22}^{B} + P_{22}^{A} \frac{P_{12}^{B} P_{21}^{B}}{1 - P_{11}^{B} P_{22}^{A}}, \ P_{12} = \frac{P_{12}^{A} P_{12}^{B}}{1 - P_{11}^{B} P_{22}^{A}}, \\ P_{13} &= P_{13}^{A} + P_{12}^{B} \frac{P_{13}^{B} + P_{11}^{B} P_{23}^{A}}{1 - P_{11}^{B} P_{22}^{A}}, P_{23} = P_{23}^{B} + P_{21}^{B} \frac{P_{23}^{A} + P_{22}^{A} P_{13}^{B}}{1 - P_{11}^{B} P_{22}^{A}} \\ P_{33} &= P_{33}^{A} + P_{33}^{B} + P_{32}^{A} \frac{P_{13}^{B} + P_{11}^{B} P_{23}^{A}}{1 - P_{11}^{B} P_{22}^{A}} + P_{31}^{B} \frac{P_{23}^{A} + P_{22}^{A} P_{13}^{B}}{1 - P_{11}^{B} P_{22}^{A}} \end{split}$$

Contents

• Parameter Extraction

Determination of COM Parameters

$$\frac{\partial U_{+}}{\partial X} = -j\theta_{u}U_{+} - j\kappa_{12}U_{-} + j\zeta V_{0}$$
$$\frac{\partial U_{-}}{\partial X} = +j\kappa_{12}^{*}U_{+} + j\theta_{u}U_{-} - j\zeta^{*}V_{0}$$
$$\frac{\partial I}{\partial X} = -j\chi\zeta^{*}U_{+} - \chi j\zeta U_{-} + j\omega CV_{0}$$

 κ_{12} : Mutual Coupling Coefficient (Mostly Constant)

- ζ : Transduction Coefficient (Mostly Constant)
- C: Capacitance (Mostly Constant)
- $\theta_{\rm u}$: detuning factor (Linearly Changes with ω) $\Rightarrow \theta_{\rm u} = \omega / V_{\rm ref} - \pi / p + \kappa_{11}$
 - $V_{\rm ref}$: Reference SAW Velocity
 - κ_{11} : Self Coupling Coefficient

$$\kappa_{11} = \pi / p - \omega_r / V_{ref}$$

For Short-Circuited (SC) Grating, $V_0 = 0$ $\theta_p = \sqrt{\theta_u^2 - |\kappa_{12}|^2}$

For Open-Circuited (OC) Grating, $\delta I=0$

When IDT is Bidirectional, ζ^2/κ_{12} is Real

One of Stopband Edge for OC Grating Coincides with that for SC Grating

Relation Between Stopband Edges and COM Parameters

$$\kappa_{11} = \frac{\pi}{p} - \frac{\omega_{sc}^{+} + \omega_{sc}^{-}}{2V_{ref}}$$

$$\kappa_{12} = s \frac{\omega_{sc}^{+} - \omega_{sc}^{-}}{2V_{ref}}$$

$$s = \begin{cases} 1 \qquad (\omega_{sc}^{+} = \omega_{oc}^{\pm}) \\ -1 \qquad (\omega_{sc}^{-} = \omega_{oc}^{-}) \end{cases}$$

$$\frac{\chi \zeta^{2}}{\omega C} = \frac{(\omega_{oc}^{+} + \omega_{oc}^{-}) - (\omega_{sc}^{+} + \omega_{sc}^{-})}{2V_{ref}}$$

How to Determine V_{ref}?

1. Determination of $|\kappa_{12}|$ by Max[-Im(θ_p)]

2. Determination of V_{ref} by Stopband Edges

FEMSDA (Full Wave Simulator)

Boundary Condition: Minimization of Radiated Power (Error) from Boundary

Dispersion of Rayleigh SAW on YZ-LN (h/p=0.07) Calculated by *FEMSDA* $V_{\rm B}=3,590.1$ m/s (Slow-shear SSBW velocity)

Fitting with Full Wave Analysis

Phase Velocity: $V_p = \omega/\text{Re}(\beta_p)$ Attenuation: $\alpha_p = 40\pi \log_{10} e \times \text{Im}(-\beta_p) / \text{Re}(\beta_p) [dB/\lambda]$

Existence of Multiple Solutions

Possibility to Jump into Blue Branch Most Possible near Stopband Edges

Countermeasure: Attacking Upward and/or Downward

Efficient Calculation by Combining FEMSDA and SYNC

Single-Electrode IDT

- 1. FEMSDA for determination of β for OC & SC
- 2. Fitting after Squared
- 3. SYNC for determination of C

Double-Electrode IDT

- 1. MSYNC for calculation of input impedance of infinitely long IDT
- 2. Determination of C & frequencies giving stopband edges by fitting
- 3. MULTI for determination of β for SC

Wavenumber of Rayleigh SAW on YZ-LN (h/p=0.07) Calculated by *FEMSDA*

 $V_{\rm B}$ =3,590.1 m/s (Slow-shear SSBW velocity)

Squared Wavenumber of Rayleigh SAW on YZ-LN (h/p=0.07) Calculated by *FEMSDA* $V_{\rm B}=3,590.1$ m/s (Slow-shear SSBW velocity)

(A) ζ with same polarity for input and output IDTs

(B) ζ with opposite polarity for input and output IDTs

Dispersion of Rayleigh SAW on 128-LN Blue: Analysis by *FEMSDA* Red: Conventional COM Analysis

 $V_{\rm B}$ =4,025 m/s (Slow-shear SSBW velocity)

Dispersion Relation vs. Al Thickness

Change in COM Parameters with Al Thickness

 $K_{u}^{2} = \frac{\pi \chi |\zeta|^{2} p_{I}}{4\omega C}$: Electromechanical Coupling Factor for *Perturbed Mode*

 $c=V_{\rm B}/V_{\rm ref}$ V_B=4,025 m/s (Slow Shear SSBW)

Correction of Simulation Parameters

- Uncertainties in Substrate Material Constants (Supplier and Lot Dependent)
- Uncertainties in Film Material Constants (Fab. Process Dependent)
- Electrode Cross-Section (Fab. Process Dependent)

Although their Absolute Values may be Doubtful, Dependencies on Device Parameters might be held

Effective Velocity of Rayleigh-type SAW on 128-LN vs. Metallization Ratio

Solid Lines: FEMSDA, +×: Experiment

Reflectivity of Rayleigh-type SAW on 128-LN vs. Metallization Ratio

Solid Lines: FEMSDA, +×: Experiment

Behavior in Ultimate Situations

 $w/p \rightarrow 1$ is not Equivalent to Flat Metallization!

Relation of COM Parameters with Resonance Characteristics

Each Parameter Independently Relates Each Property ⇒ *Easy to Fit with Experiments*

Contents

• BAWs and SH SAWs

Excitation and Propagation of BAWs

Propagation of Cylindrical Wave $(P \propto r^{1} \Rightarrow u \propto r^{0.5})$

Rapid Attenuation When Influence of Surface is Significant

L & SV Do not Satisfy Surface Boundary Condition

Non-Radiative Parallel to Surface?

BAW Radiated to Surface Changes into SAW

Coupling of SH & Φ Components

 $SH+\phi \Rightarrow SH-Type SAW$

Efficient SAW Radiation ⇔ Suppression of SSBW Radiation

SSBW: Surface Skimming Bulk Wave BAW Propagating on Surface

Excitation and Propagation: Very Sensitive to Surface Condition

Characterized by Velocity Difference Between SAW and BAW

Frequency Response of BAW Radiation

•Cutoff Nature

•Radiation Peak just above the Cutoff Freq.

 $F(\theta)$: θ Dependence of BAW Radiation

Cutoff for BAW Back-Scattering ≈ SAW Resonance Frequency

SAW Bragg Reflection to Bulk Waves

When
$$S_{\rm S} > S_{\rm B}$$

Cutoff Freq. $f_{\rm BC}$ for BAW Back-Scattering
 $f_{\rm Bc} = \frac{n}{(S_{\rm S} + S_{\rm B})p} > \frac{n}{2S_{\rm S}p}$
SAW Bragg Freq.
BAW Bean Scan with f
 $\cos \theta_{\rm B} = \frac{f_{\rm Bc}}{f} (S_{\rm S}S_{\rm B}^{-1} + 1) - S_{\rm S}S_{\rm B}^{-1}$

At Frequency Below f_{Bc}

Evanescent Field via Non-Radiated BAW

Energy Storage (SAW Velocity Reduction) Effect

Dispersion in phase velocity and attenuation of *SH-type SAW* on the SC grating ($h/\lambda=0.1$) on 42-LT. Blue lines: calculated by FEMSDA

SAW Wavenumber Derived by Conventional COM Theory

$$\beta_s = \pi / p + \sqrt{\theta_u^2 - \kappa^2}$$

where θ_u is detuning factor
 (linearly dependent on frequency)
 κ: mutual coupling factor (const.)
 p: grating period

Dispersion in phase velocity and attenuation of *Rayleigh-type SAW* on gratings on 128-LN. Blue lines: calculated by FEMSDA, and red lines: calculated by conventional COM.

Dispersion in phase velocity & attenuation of *SH-type SAW* on SC grating on 42-LT. Blue lines: calculated by FEMSDA, and red lines: calculated by conventional COM.

Origin of dispersion near stopband

• Dispersion Relation

$$\beta_s = \pi / p + \sqrt{\Delta^2 - (\varepsilon_s^2 / 2 + \eta_s \sqrt{\Delta_{Bs} - \Delta})^2}$$

where $\Delta = c(\omega / V_B - \pi / p)$: normalised frequency $\Delta_{Bs} = \varepsilon_s^2 / 2 - \eta_s^2 / 4$: normalised BAWcutoff frequency

 ε_s , η_s , c: parameters for SC grating (constant)

Phase velocity of *SH-type SAW* for grating structure on 42-LT.

Blue lines: calculated by FEMSDA, and red lines: calculated by Plessky's model.

Attenuation of *SH-type SAW* for grating structure on 42-LT.

Blue lines: calculated by FEMSDA, and red lines: calculated by Plessky's model.

What will Happen When Periodicity Breaks?

BAW Radiation + Additional Phase Shift (Frequency Dependent)