April 2, 2019

Introduction of Surface Acoustic Wave (SAW) Devices

Part 6: 2D Propagation and Waveguide

Ken-ya Hashimoto

Chiba University

k.hashimoto@ieee.org

http://www.te.chiba-u.jp/~ken

Contents

- Wavevector and Diffraction
- Waveguide
- Scalar Potential Theory

Contents

• Wavevector and Diffraction

Critical Length : $x_c = (1+\gamma)W^2/\lambda$

γ: Parameter Determined by Anisotropy(=0 for Isotropic)

Variation with Aperture Size

For Weighted IDT

Wave Vector **B**

 $|\beta|=2\pi/\lambda$:Phase Delay per Unit Length

 $V_{\rm p}$ (= $f\lambda$) does not Follow Vector Decomposition Rule!

 $\exp(-j\boldsymbol{\beta} \bullet \mathbf{X}) \implies \exp[-j(\boldsymbol{\beta}_x x + \boldsymbol{\beta}_y y + \boldsymbol{\beta}_z z)]$

Snell's Law

Continuity of Wave Front at Boundary

Continuity of Lateral Wavelength ⇒ Continuity of Lateral Wavevector Component

At Boundary Between Two media,

Evanescent Field (at Total Reflection)

$$\beta_{y}^{(2)} = -j\sqrt{\beta_{x}^{2} - \beta_{0}^{(2)2}}$$

Field Penetration

Exponential Decay (Energy Storage)

- Even for Total Reflection State, Wave Transmission Occurs when Medium is Thin
- No Phase Delay Through Transmission

Anisotropy Case $u \propto \exp[j(\omega t - \beta_x x - \beta_y y)]$

$$\beta_x^2 + (V_{y0} / V_{x0})^2 \beta_y^2 = (\omega / V_{x0})^2$$
$$\beta_x \cong (\omega / V_{x0}) - 2^{-1} (\omega / V_{x0})^{-1} (V_{y0} / V_{x0})^2 \beta_y^2$$

Parabolic Approximation

Para-Axial Approximation for X»|Y|

Approximating $\beta_x \cong \beta_{x0} - \zeta \beta_y^2$, Then $G(X,Y) \cong \frac{F}{\sqrt{2\pi |\zeta X|}} \exp(-j\beta |X| - jY^2 / 4 |\zeta X|)$ Contribution of *n*-th Electrode (Width w_n , Position (x_n, y_n))

Significant at Higher Out-of-Band Rejection

Contents

• Waveguide

Influence of Diffraction in SAW Resonators

Inharmonic Resonances

Design Challenge: Suppression of Inharmonic Resonances Without Badly Affecting Main Resonance

For Phase Matching Between Incident and 2-Bounced Waves

Transverse Resonance Condition $-2\beta_v h_v + 2\angle \Gamma = 2n\pi$

 $\beta_v h_v = n_v \pi$

 $\beta_v h_v = n_v \pi$

 $\left(\frac{n_{y}\pi}{h_{v}}\right)^{2} = \beta_{0}^{2}$

 $\beta_x^2 + \left(\frac{n_y \pi}{h_v}\right)^2 = \beta_0^2$

$$\beta_x = \sqrt{\beta_0^2 - \beta_y^2}$$
 and $\beta_y h_y = n\pi$

Wavenumber of Guided Mode $\beta_x = \sqrt{(\omega/V)^2 - (n\pi/h_y)^2}$

Relation Between β_x and β_0 When $\angle \Gamma = 0$ or $\pm \pi$

Influence of Group and Phase Velocities on Signal Transfer

Under Cutoff Frequency

Behavior as Evanescent Field

Even if not Cutoff

Influence of Higher-Order Cutoff Modes

Open Waveguide

Use of Total Reflection at Surfaces \Rightarrow Energy Penetration to Outsides

Transverse Resonance Condition $-2\beta_y h_y + 2\angle \Gamma = 2n\pi$ $\angle \Gamma$ is Frequency (or θ) dependent

Similarity with Closed Waveguide at Total Reflection

Relation between β_x and β_0

If Total Reflection Condition is Not Satisfied?

Leaky Waveguide

When Reflection Coefficient at Surfaces is Large, Pseudo Mode Propagates with Energy Leakage to Outside

If Reflection Coefficient at Surfaces is Small?

Propagation as Free Wave(Not Guided)

Appearing When Velocities of Waveguide Mode and Free Wave are Close (Near Cutoff)

 $\phi_{\rm c} = \cos^{-1}(V_{\rm S}/V_{\rm B})$: critical angle

 $V_{\rm S}$: SAW velocity, $V_{\rm B}$: BAW velocity

 $\phi_{\rm c} = \cos^{-1}(V_{\rm B}/V_{\rm S})$: critical angle

*V*_S: SAW velocity, *V*_B: BAW velocity *Field Amplitude Grows Toward the Depth!* **Resonance Frequency of Cuboid Cavity**

Wavevector of Propagation Mode in Rectangular Waveguide

• Scalar Potential Theory

Scalar Potential Analysis

Due to Continuity of ϕ and $\partial \phi / \partial y$ at $y = \pm w_G / 2$

Symmetric Mode $(\phi_B^+ = \phi_B^-, \phi_G^+ = \phi_G^-)$ $\phi_B^+ = 2\phi_G^+ \cos(\beta_{Gy} w_G / 2) \exp(\alpha_{By} w_G / 2)$ $\alpha_{By} = \beta_{Gy} \tan(\beta_{Gy} w_G / 2)$

Anti-Symmetric Mode $(\phi_B^+ = -\phi_B^-, \phi_G^+ = -\phi_G^-)$ $\phi_B^+ = -2j\phi_G^+ \sin(\beta_{Gy}w_G/2)\exp(\alpha_{By}w_G/2)$ $\alpha_{By} = -\beta_{Gy}\cot(\beta_{Gy}w_G/2)$

Parabolic Approximation for Slowness Surface

For Region G $\beta_x \cong \beta_{G0} - \xi_G \beta_{Gy}^2 / \beta_{G0}$ For Region B $\beta_x \cong \beta_{B0} + \xi_B \alpha_{By}^2 / \beta_{B0}$ For Isotropic Case, $\xi=0.5$

Slowness Surface of SH-type SAW on 36-LT

Wavenumber of Grating Mode and Slowness Surface

For Energy Trapping in Waveguide \Rightarrow Real α_{Bv}

When $|V_{B0}/V_{G0}-1| \ll 1$, Symmetric Mode $\sqrt{\frac{1-\hat{V}}{1+\hat{V}}} = \tan\left[\pi\hat{w}_{G}\sqrt{\frac{1+\hat{V}}{2}}\right]$ Anti-Symmetric Mode $\sqrt{\frac{1-\hat{V}}{1+\hat{V}}} = -\cot\left[\pi\hat{w}_{G}\sqrt{\frac{1+\hat{V}}{2}}\right]$

Where
$$\hat{V} = \frac{2V_p - V_{B0} - V_{G0}}{V_{B0} - V_{G0}}$$
 :Relative Phase Velocity
 $\hat{W}_{G} = \frac{W_G}{\lambda_p} \sqrt{\frac{V_{B0} - V_{G0}}{\xi V_{G0}}}$:Relative Waveguide Width

Relative SAW Velocity vs. Relative Aperture

Velocity in Region B ⇒Velocity in Region G

Equivalent Circuit for Multi-Mode Resonators

$$\omega_{\rm r}^{(n)} = \frac{1}{\sqrt{C_{\rm m}^{(n)}L_{\rm m}^{(n)}}} = \frac{2\pi V_{\rm p}^{(n)}}{p_{\rm I}}$$

Modes Propagate without Mutual Power Interaction

$$\int_{-\infty}^{+\infty} |\phi_k(y) + \phi_n(y)|^2 dy = \int_{-\infty}^{+\infty} |\phi_k(y)|^2 dy + \int_{-\infty}^{+\infty} |\phi_n(y)|^2 dy$$

Mode Orthogonality

$$\int_{-\infty}^{+\infty} \phi_k(y) \phi_n^*(y) dy = \delta_{nk} P_k$$

where $P_k = \int_{-\infty}^{+\infty} |\phi_k(y)|^2 dy$

Field can be Expressed as Sum of Mode Fields Mode Completeness

$$\phi(y) = \sum_{k=1}^{\infty} A_k \phi_k(y) / \sqrt{P_k}$$

Fourier Transform $\varphi_n(x) = p^{-0.5} exp(2n\pi j x/p)$

Orthogonality

$$\int_{0}^{p} \phi_{k}(x)\phi_{n}^{*}(x)dx = p^{-0.5}\int_{0}^{p} \exp[2\pi j x(n-m)/p]dx = \delta_{nk}$$

$$\phi(x) = \sum_{k=1}^{\infty} A_k \phi_k(x) = p^{-0.5} \sum_{k=1}^{\infty} A_k \exp(2k\pi j x / p)$$

 $\begin{aligned} & \underset{p}{\overset{p}{\int}} \phi(x)\phi_{n}^{*}(x)dx = \int_{0}^{p} \sum_{k=1}^{\infty} A_{k}\phi_{k}(x)\phi_{n}^{*}(x)dx = A_{n} \\ & \underset{p}{\overset{p}{\int}} A_{n} = p^{-0.5} \int_{0}^{p} \phi(x) \exp(-2n\pi j x / p) dx \end{aligned}$

Difference of Waveguide Width w_g with Finger Overlap Width w_e

Amplitude at Excitation Source

$$\phi(y) = \begin{cases} \phi_0 & (|y| \le w_e/2) \\ 0 & (|y| > w_e/2) \end{cases}$$

Multiplying $\phi_m^*(y)$ and Integrating

$$\int_{-\infty}^{+\infty} \phi(y) \phi_m^*(y) dy = \sum_{k=1}^{\infty} A_k / \sqrt{P_k} \int_{-\infty}^{+\infty} \phi_k(y) \phi_m^*(y) dy$$

Then

$$A_{m} = \frac{\phi_{0}}{\sqrt{P_{m}}} \int_{-w_{e}/2}^{+w_{e}/2} \phi_{m}^{*}(y) dy$$

1D Analysis Gives $A_0 = \phi_0 \sqrt{w_e}$

Since Motional Capacitance ∞ Power Excitation Efficiency,

$$\frac{C_m^{(n)}}{C_m^{(0)}} = \left|\frac{A_n}{A_0}\right|^2 = \left|\int_{-w_e/2}^{+w_e/2} \phi_n(y) dy\right|^2 \left[w_e \int_{-\infty}^{+\infty} |\phi_n(y)|^2 dy\right]^{-1}$$

Effective Electromechanical Coupling Factor vs. Relative Aperture Width (When $w_e = w_g$)

Zero Excitation Efficiency for Anti-Symmetric Modes

Why Effective Coupling Factor Changes?

